

10CS34

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Determine the sets A and B, given that $A - B = \{1, 3, 7, 11\}$, $B - A = \{2, 6, 8\}$ and $A \cap B = \{4, 9\}$.

b. State and prove DeMorgan Laws.

(06 Marks)

c. Using the laws of set theory, simplify $\overline{(A \cup B) \cap C \cup B}$.

(04 Marks)

d. A problem is given to four students A, B, C, D whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ respectively. Find the probability that the problem is solved. (06 Marks)

respectively. Find the probability that the problem is solved.

(06 Marks) (07 Marks)

 $[(p \lor q) \land \{(p \to r) \land (q \to r)\}] \to r \text{ is a tautology.}$ b. Prove that, for any three propositions, p, q, r $[(p \lor q) \to r] \Leftrightarrow [(p \to r) \land (q \to r)].$

c. Test the validity of the following argument:

If Ravi goes out with friends, he will not study. If Ravi does not study, his father becomes angry.

His father is not angry

. Ravi has not gone out with friends.

(07 Marks)

3 a. Suppose the universe consists of all integers. Consider the following open statements: Consider the following open statements: $p(x): x \le 3$, q(x): x+1 is odd, r(x): x>0 Write down the truth values of the following:

(i) p(2)

(ii) $\neg q(4)$

(iii) $p(-1) \land q(1)$

(iv) $\neg p(3) \lor r(0)$

 $(v) p(0) \rightarrow q(0)$

(vi) $p(1) \leftrightarrow \neg q(2)$

(06 Marks)

b. Find whether the following is a valid argument for which the universe is the set of all students.

No Engineering student is bad in studies

Anil is not bad in studies

:. Anil is an Engineering student

(07 Marks)

- c. Prove that for all integers k and l, if
 - (i) k and l are both odd, then k + l is even and kl is odd.
 - (ii) k and l are both even, then k + l and kl are even.

(07 Marks)

4 a. Prove that $4n < (n^2 - 7)$ for all positive integers $n \ge 6$.

(06 Marks)

- b. A sequence $\{a_n\}$ is defined recursively by $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find a_n in explicit form. (07 Marks)
- c. The Fibonacci numbers are defined recursively by $F_0=0$, $F_1=1$ and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 2$. Evaluate F_2 to F_{10} .

PART - B

- For any non-empty sets A, B, C, prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$. 5 (05 Marks)
 - b. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{w, x, y, z\}$. Find the number of onto functions from (05 Marks)
 - c. Show that if any 6 numbers from 1 to 10 are choosen, then two of them have their sum equal (05 Marks)
 - d. Let f, g, h be functions from R to R defined by f(x) = x + 2, g(x) = x 2, h(x) = 3x for all (05 Marks) $x \in R$. Find gof, fog, foh, hog, hof.
- Consider the sets $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$ and the relations $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$ and $S = \{(a,1),(a,2),(b,1),(b,2)\}$ from A to B determine \overline{R} , \overline{S} , $R \cup S$, $R \cap S$, R^{C} and S^{C} .
 - b. Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on $A \times A$ by $(x_1, y_1)R(x_2, y_2)$ if and only if $X_1 + Y_1 = X_2 + Y_2$.
 - Verify R is an equivalence relation on $A \times A$.
 - Determine the equivalence classes [(1,3)], [(2,4)] and [(1,1)](ii)
 - Determine the partition of $A \times A$ induced by R. (07 Marks)
 - c. Let $A = \{1, 2, 3, 4, 6, 12\}$ on A define the relation R by aRb if an only if a divides b. Prove that R is a partial order on A. Draw the Hasse diagram for this relation. (07 Marks)
- If * is an operation on z defined by x * y = x + y + 1. Prove that (z,*) is an abelian group.

(06 Marks)

State and proof Lagrange's theorem.

(07 Marks)

c. Prove that the intersection of two subgroups of a group is a subgroup of the group.

(07 Marks)

The Parity-check matrix for an encoding function, $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ is given by, 8

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

- Determine the associated generator matrix.
- (ii) Does this code correct all single errors in transmission?

(06 Marks)

- b. Prove that the set z with binary operations \oplus and \odot defined by $x \oplus y = x + y 1$ and $x \odot y = x + y - xy$ is a commutative ring with unity. (07 Marks)
- degr. c. Prove that every finite integral domain is a field.

(07 Marks)